Integrated Battery Systems for Electrified Flight NASA Electrified Powertrain Flight Demonstration – 11.30.2020 Presented by: AK Srouji, PhD - CTO ## **Engineering Overview** ## Strong team with relevant combined experience across key engineering disciplines ## **Romeo Engineering Overview** - 60+ battery-specific engineers - Deep knowledge experts team across all core engineering disciplines including electrical, thermal, chemical, mechanical, electrochemistry - Team members experienced with multiple prolific vehicle launches - Combining automotive, space, and aviation tech to create the most advanced battery systems for electric vehicles - 7 GWh-capable, fully functional manufacturing and R&D center located in Los Angeles, California #### **Select Professional Experience** Qualcom ## Representative Product Launch Experience of Romeo Engineering Team Tesla Roadster Tesla Model S Tesla Model X Faraday Future FF91 Fiat 500e Porsche Cayenne Hybrid Apache Helicopter SpaceX Dragon Rocket ## **Evolution of Romeo** ## Demonstrating major milestone achievements and progress on vision in less than four years ## Romeo's Evolution and Growth Trajectory # **Core Focus on Battery and Module Packs** # Battery Engineering ## **How Does Romeo's Technology Enhance EV Performance?** | | Cell Science
Design and
Engineering | Romeo performs extensive independent evaluation of cells
and closely collaborates with industry leading cell
manufacturers at early development stages of next generation
cell technology Cell selection process based on energy density, quality and
safety standards | |--|--|--| | | Modular / E-Plate
Technology &
Electro-Mechanical
Engineering | Designed for durability and crashworthiness; fulfills requirements for volume production such as manufacturability and serviceability Modules are designed to meet the highest safety standards and have undergone extensive testing and broad-based customer validation | | | Thermal
Engineering | Designed for consistent temperature distribution within and
among all battery cells guaranteeing lifetime maximum battery
performance | | | Battery
Management
System (BMS) | Creates a singular platform enabling all customers to benefit
from field testing of electronic and software for prototypes
through scaled deployment Established safety measures system, including isolation
monitoring, high voltage interlock, manual service disconnect,
hardware and software protections | | | BMI-AI ¹ | Maximize total fleet battery health by leveraging machine learning to help reduce total cost of ownership Learn aging factors from field behavior based on feedback from battery population health optimization Provide individual decisions that benefit net total asset and increased profitability of fleet managers, and total cost of ownership | # **State-of-the-Art Production Facility** In-house design, manufacturing and testing capabilities for Romeo North America #### **Site Highlights** - 113,000 ft² North American Headquarters, strategically located in Los Angeles to attract the best industry talent - Deliberately designed to allow for cost effective expansion of productions lines to 7 GWh / year capability - All key battery development labs in-house, including: - Reliability, Testing & Validation Lab - Battery Cell Test Lab (Form Factor Agnostic) - Battery Safety & Test Facility Section - Battery Management Systems Engineering - IS09001 Certified & UL2580 Certified¹ ## **Production Facility Outside of Los Angeles** #### **Romeo Facility Overview** While many competitors outsource most testing and some assembly, Romeo's complete in-house solution-set allows the company to protect IP, ensure quality control and accelerate development and production # **Technology Overview** ## Romeo's batteries use a modular design and best-in-class components 1 ## **Cell Science** - Cell procurement is a carefully guided process with rigorous testing and validation processes to ensure only the best cells are selected - Romeo's packs and modules are cell-agnostic, allowing the company to use only the best for each application, and adapt and change as new cells come to market 2 ## Module Technology - Flexible and customizable design acts as a building block which allows for custom packs without needing months / years of additional R&D for each prototype - Modules are designed to meet the highest safety standards and have undergone extensive testing and broad-based customer validation, both at the individual pack and module level 3 ## **Pack Technology** - Mechanical pack design addresses key requirements – from durability and crashworthiness to manufacturability, serviceability, and recyclability - Flexible design allows the company to reach significant scale and a broad range of customer needs without incurring significant additional costs and overhead 4 #### **BMS** - Battery management system serves as complete solution for monitoring and control - Romeo's BMS are built on a highly configurable platform, allowing it to support a wide variety of architectures, and driving lower cost and a faster time to market when compared to peers **Exhaustive Testing In-House** Developed by Romeo In-House ## **Module Technology** ## Flexible and efficient building block for configurable, scalable energy storage #### **Hermes Module** #### **Key Attributes** - Market-leading building block with active high cooling performance - 20-30% more energy density than same-size competitor packs ¹ - High stability and **superior thermal management** (<4 °C Temp delta) - Patented and structural cold-plate technology allows for quick integration into vehicle structures. - Electrical isolation protection achieved without compromising energy density or thermal performance 1000V working voltage. - Liquid active cooling within **slimmest volume factor** (7% of volume) - No fire propagation during single or multiple cell failures - 2hr baseline charge time for optimal life (20min, fast charge to 80%) - Highest manufacturing rate at <100 ms per Cell # **Battery Management System (BMS)** Among the most flexible and configurable systems in the market today Romeo's BMS offers a complete solution for monitoring and controlling complex battery systems for automotive applications #### **Features** - Voltage, current, temperature, isolation measurements - Operating modes, contactor, pre-charge and charge control - Safety measures isolation monitoring, high voltage interlock, manual service disconnect, hardware and software protections - Advanced battery control algorithms - Advanced diagnostics and prognostics - Field configurability for fast and convenient integration - Support over-the-air updates - Cybersecurity - Automotive ISO 26262 compliant¹ ## **Value Proposition** - Built on highly configurable platform - Self-diagnostics - Supports wide variety of architectures - Operates with virtually every vehicle engine control unit - Proven exceptional real world performance - Low cost and robust - Scalable from 48V to 1000V - Faster time to market ## **Advanced Algorithms** - Others only measure voltage, temperature and current, leading to increased buffers and cost - Romeo utilizes a series of sophisticated realtime onboard models as a result of proprietary testing and algorithm developments: - More accurate remaining range estimation - More accurate battery health estimation - Enables safer and faster charging # **Thermal Event Safety** ## Designing a safe battery system using a collaborative effort across multiple knowledge domains ## **Thermal Event Mitigation** #### **Cell Selection** - Selection of safest cells only as result of elaborate testing campaign - · Reproducible and predictable behavior #### **Mechanical Design** - · Robust to vibration and road failures - Flame ablation and resistant material #### **Electrical Design** - Rational fusing hierarchy down to the single cell - · Multiple disconnects and pyro devices #### Pack Design - · Venting strategy and methodology - Crash mitigation strategy #### In-House Battery Safety Testing and Targeted Safety R&D - Allows for continuous destructive testing and failure analysis, providing quick and precise feedback for the safest product designs - In-house testing capabilities include: - Cell, module, pack and destructive testing (fire and mechanical) - Materials and components stability / dielectric withstand at high voltage - Testing and validation of venting strategies - Abuse testing covers most stringent safety standards - Safety group director with 10+ years of battery safety experience #### Romeo's Solution at Work ■ Experiencing Thermal Runaway # Creating Massive Deployment Leverage at Every Level # **Pack Technology** Customers are willing to pay a premium for integrated products from their battery solution provider Using 4 major cells, with 8 voltage variants and 6 different packs, Romeo is able to create <u>192 products</u> utilizing the same module, manufacturing line, process and test sequence, allowing for high customizability and product expansion with ease # Pack Technology for E-Flight ## Taking advantage of product status for trucks and commercial vehicles - Reduce Weight: - Increase structural integration - Utilize more lightweight materials (composites, hybrids, etc) - Increase Power - Cells with high P/E ratios - Evaluate and upgrade as needed for aviation grade redundancy and functional safety - Other # **Example Mega Pack** - 1.2 MWh system to achieve 900+ km - 7+ yrs, 700,000+ km life - Distributed system w/ ISO 26262 BMS - Serviceable junction per pack box for ease of maintenance and access - Single or multiple cell fault tolerance at pack level - SAE J2380 - Temperature uniformity within 3 dimensions < 5 deg C - Scalable system allows to add/remove energy for specific customer needs ## **Generalized mounting example:** | | Single Pack | System Level | | |-------------------------------|--|---|--| | Application | Mega EVs | | | | Configuration | 8S1P (Hermes 24s) | 1S15P Parallel Packs | | | Capacity: Total | 80 kWh | 1.2 MWh | | | Useable | 65.6 kWh | 1 MWh | | | Voltage Range,
Operation | 806 to 480 VDC | | | | | 1.2C (approx. 96 kW)
discharge | 1.2C (<mark>approx. 1440 kW)</mark>
discharge | | | Cont. Power | 0.9C (approx. 72 kW) charge | 0.9C (approx. 1080 kW)
charge | | | | 0.31 C (approx. 25 kW)
regen | 0.31 C (approx. 375 kW)
regen | | | Peak Power | 4C (approx. 320 kW)
discharge | 4C (approx. 4.8 MW) discharge | | | (10 sec pulse) | 3C (approx. 240 kW) regen | 3C (approx. 3.6 MW) regen | | | 0 " T | -20 to 60°C (discharge) | | | | Operation Temp | 0 to 50°C (charge) | | | | Dimension (overall) | 844 (L) x 671 (W) x 714 (H) mm per Pack | | | | Volume | 404 L | 6,060 L | | | Volumetric Energy
Density | 200+ Wh/L (up to 245 Wh/L) | | | | Weight | Less than 500 kg | Less than 4,500 kg | | | Gravimetric Energy
Density | Greater than 160 Wh/kg | | | | BMS Architecture | Distributed with CANbus Communication Over J1939 | | | | 12 | | | | # Reducing weight, Increasing Power to Weight Ratio are in Focus ## Reduce Weight: - Increase structural integration - o Utilize more lightweight materials (composites, hybrids, etc) - Increase Power - Cells with high P/E ratios - Evaluate and upgrade as needed for aviation grade redundancy and functional safety - Other ## **Energy Density Improvements Remain Critical** **Defined Pathway with Continuous Potential Improvements Until 2030**